RSS
 

Cara Menentukan Massa Atom

30 Sep

Seiring dengan perkembangan zaman dan teknologi, penelitian mengenai atom menunjukkan perkembangan yang lebih maju dan terarah. Hasil penelitian terbaru menyatakan bahwa suatu atom ternyata tersusun atas partikel-partikel yang lebih kecil, yaitu proton, neutron, dan elektron. Apakah perbedaan antara proton, neutron, dan elektron?

a. Elektron

Penemuan elektron berawal dari pembuatan tabung sinar katode oleh J. Plucker. Tabung sinar katode menjadi lebih berarti setelah J.J. Thomson mempelajari sinar katode yang dihasilkan tabung. Thomson melaporkan data penelitiannya sebagai berikut.

1. Sinar katode merambat dalam suatu garis lurus, kecuali jika dikenai gaya dari luar.

2. Sinar katode tertarik ke arah lempeng bermuatan positif.

3. Sinar ini terdiri atas partikel-partikel dengan massa tertentu.

4. Sifat sinar katode adalah sama, tidak bergantung pada bahan dan zat yang ada dalam tabung.

Berdasarkan data-data tersebut, Thomson menyimpulkan hal-hal berikut.

1. Sinar katode bermuatan negatif.

2. Angka banding muatan terhadap massa (e : m) untuk sinar katode yaitu 1,7588 × 108 C/g.

3. Partikel sinar katode adalah partikel dasar yang ada dalam setiap materi.

Partikel sinar katode itu diberi nama elektron. Elektron merupakan salah satu partikel dasar penyusun atom. Pada 1913, seorang ahli fisika Amerika Robert A. Millikan melakukan percobaan agar dapat mengetahui muatan elektron. Ia meneliti naik turunnya butir-butir minyak di dalam medan listrik sehingga akhirnya dapat menentukan muatan mutlak untuk elekton (e) yaitu sebesar 1,6022 × 10–19 coulomb. Untuk lebih memudahkan, muatan listrik untuk elektron diberi nilai relatif negatif satu (–1). Dengan ditemukannya muatan mutlak untuk elektron maka massa elektron dapat dihitung yaitu sebesar 9,1096 × 10–28 g.

b. Proton

Pada 1886, Eugen Goldstein mempelajari arah sinar pada sebuah tabung sinar katode. Goldstein melubangi katode dalam tabung sinar katode, kemudian mengamati sinar yang terdeteksi di balik katode tersebut. Ternyata, jika elektron berkecepatan tinggi bergerak dari katode ke anode, elektron akan menumbuk partikel gas dalam tabung membentuk partikel positif yang bergerak ke katode. Bahkan, sebagian keluar melalui lubang katode. Berdasarkan hal ini, ia menyimpulkan perbedaan antara angka banding (e : m) untuk partikel positif dan elektron. Menurut Goldstein, angka banding (e : m) untuk partikel positif berbeda jika gas dalam tabung berbeda, sedangkan untuk elektron tetap tidak bergantung pada jenis gas dalam tabung.

Kemudian, nilai angka banding (e : m) partikel positif jauh lebih kecil daripada elektron. Dengan demikian, dapat disimpulkan bahwa massa ion positif jauh lebih besar daripada massa elektron.

Ion hidrogen merupakan partikel positif yang paling ringan. Harga e : m ion hidrogen sebesar 9,5791 × 104 C/g. Partikel ion hidrogen ini dinyatakan sebagai partikel dasar atom yang besar muatannya sama dengan muatan elektron tetapi berlawanan tanda. Dengan demikian, massa ion hidrogen dapat dihitung sebesar 1,6726 × 10–24 g atau sekitar 1.837 kali massa elektron. Ion  hidrogen ini disebut proton.

c. Neutron

Pada 1932, J. Chadwick menemukan partikel dasar ketiga yang terletak dalam inti dan tidak bermuatan, partikel tersebut dikenal dengan nama neutron. Dengan ditemukannya partikel neutron, terdapat tiga partikel dasar atom, yakni elektron, proton, dan neutron. Proton dan neutron terletak di dalam inti, sedangkan elektron beredar mengelilingi inti.

2. Cara Menentukan Jumlah Proton, Jumlah Elektron, dan Jumlah Neutron

Saat ini, unsur-unsur kimia yang telah diketahui berjumlah sekitar 118 unsur. Unsur-unsur tersebut memiliki sifat yang berbeda satu sama lain. Perbedaan sifat setiap unsur kimia disebabkan perbedaan jumlah proton dan elektron setiap atom yang menyusun unsur-unsur kimia tersebut. Bagaimana cara menentukan jumlah proton, jumlah elektron, dan jumlah neutron suatu atom? Untuk mengetahuinya, lakukanlah kegiatan berikut.

Apa yang Anda peroleh dari kegiatan tersebut? Untuk memahaminya, pelajarilah penjelasan berikut.

a. Nomor Atom Menyatakan Jumlah Proton dan Jumlah Elektron

Jumlah proton dan jumlah elektron suatu atom dapat ditentukan dengan mengetahui nomor atomnya. Nomor atom menyatakan jumlah proton dan jumlah elektron suatu atom.

Nomor Atom = Jumlah Elektron = Jumlah Proton

b. Selisih Nomor Massa dan Nomor Atom Menyatakan Jumlah Neutron

Jumlah neutron suatu atom dapat ditentukan dengan mengetahui nomor massa dan nomor atomnya. Caranya dengan menentukan selisih antara nomor massa dan nomor atom. Hasilnya menyatakan jumlah neutron suatu atom.

Nomor Massa – Nomor Atom = Jumlah Neutron

Contoh 1.2

Tentukanlah jumlah neutron dari atom-atom berikut.

a. Na (nomor atom = 11, nomor massa = 23)

b. Mg (nomor atom = 12, nomor massa = 24)

c. S (nomor atom = 16, nomor massa = 32)

Jawab

a. Nomor massa – nomor atom = jumlah neutron.

Nomor massa Na – nomor atom Na = jumlah neutron Na Jadi, jumlah neutron Na = 23 – 11 = 12

Untuk memudahkannya, ditulis dalam tabel.

5b - Struktur atom 2

c. Cara Menentukan Konfigurasi Elektron dan Elektron Valensi

Pada pembahasan sebelumnya, Anda telah mengetahui bahwa struktur atom terdiri atas inti atom (proton dan neutron) yang dikelilingi oleh elektron dalam suatu lintasan. Elektron-elektron tersebut tersebar ke dalam beberapa lintasan yang mengelilingi inti atom. Jumlah elektron yang menempati setiap lintasan berbeda-beda. Susunan elektron dalam setiap lintasan atom disebut konfigurasi elektron. Dengan mengetahui konfigurasi elektron suatu atom, Anda dapat menentukan nomor golongan, nomor periode, dan elektron valensi suatu atom. Terdapat dua cara penentuan konfigurasi elektron yaitu cara per kulit (cara K L M N) dan cara per subkulit (cara s p d f). Cara per kulit hanya berlaku untuk atom-atom unsur golongan utama (golongan A). Adapun cara per subkulit dapat digunakan untuk atom-atom unsur golongan transisi (golongan B).

Akan tetapi, pada Kelas X ini hanya akan dibahas cara per kulit saja. Anda dapat mempelajari penentuan konfigurasi elektron cara per subkulit di Kelas XI. Penentuan konfigurasi elektron cara per kulit didasarkan pada jumlah elektron yang dapat mengisi setiap kulit. Jumlah maksimum elektron yang dapat mengisi setiap kulit dirumuskan dengan 2n2 (n = kulit yang ditempati elektron). Jumlah elektron maksimum yang dapat ditempati pada setiap kulit adalah:

Kulit pertama (kulit K) = 2 elektron

Kulit kedua (kulit L) = 8 elektron

Kulit ketiga (kulit M) = 18 elektron

Kulit keempat (kulit N) = 32 elektron

Berikut ini cara-cara untuk menentukan konfigurasi elektron suatu atom dengan nomor atom 1–20.

a. Kulit pertama (kulit K) maksimum ditempati 2 elektron.

b. Kulit kedua (kulit L) dan ketiga (kulit M) maksimum ditempati 8 elektron.

c. Kulit keempat (kulit N) maksimum ditempati 18 elektron.

d. Penempatan elektron dimulai dari kulit pertama, kedua, ketiga, dan seterusnya.

Agar Anda lebih memahami cara menentukan konfigurasi elektron, pelajarilah contoh soal berikut.

Contoh 1.3

Tentukanlah konfigurasi elektron atom-atom berikut.

a. O (nomor atom = 8)

b. Na (nomor atom = 11)

c. S (nomor atom = 16)

d. Ca (nomor atom = 20)

Jawab

a. Nomor atom O = 8

kulit K terisi 2 elektron

kulit L terisi 6 elektron

Jadi, konfigurasinya 2 6. Elektron pada atom O mengisi 2 lintasan yaitu K dan L. Untuk memudahkan pengerjaan, jawaban dapat ditulis seperti tabel berikut.

Bagaimana jika nomor atom lebih dari 20? Untuk atom dengan nomor atom (jumlah elektron) lebih dari 20, dapat dilakukan cara sebagai berikut.

a. Kulit pertama (kulit K) dan kulit kedua (kulit L) diisi dengan jumlah elektron maksimum terlebih dahulu.

b. Kulit ketiga (kulit M) diisi dengan jumlah elektron:

• 18 jika : elektron yang tersisa > 18

• 8 jika : 8 ??elektron yang tersisa < 18

• sisa jika : elektron yang tersisa < 8

c. Kulit keempat (kulit N) diisi dengan jumlah elektron:

• 32 jika : elektron yang tersisa > 32

• 18 jika : 18 ??elektron yang tersisa < 32

• 8 jika : 8 ??elektron yang tersisa < 18

• sisa jika : elektron yang tersisa < 8

Contoh 1.4

Tentukanlah konfigurasi elektron atom-atom berikut.

a. Ge (nomor atom = 32)

b. Se (nomor atom = 34)

c. Sr (nomor atom = 38)

d. Ra (nomor atom = 88)

Jawab

a. Nomor atom Ge = 32

kulit K = 2 (maksimum)

kulit L = 8 (maksimum)

kulit M = 18 (maksimum)

kulit N = 4 (sisa)

Jadi, konfigurasinya 2 8 18 4. Elektron pada atom Ge mengisi 4 lintasan yaitu K, L, M, dan N.

Untuk memudahkan pengerjaan, jawaban dapat ditulis seperti tabel berikut.

Sebelumnya, diinformasikan bahwa dengan mengetahui konfigurasi elektron suatu atom, Anda dapat menentukan periode dan golongan suatu atom. Untuk mengetahui caranya, lakukanlah kegiatan berikut. Untuk membuktikan adanya hubungan antara konfigurasi elektron dan posisi golongan maupun periode dalam tabel periodik, lengkapilah tabel berikut dengan menggunakan informasi dari tabel periodik.

Adakah hubungan antara jumlah elektron pada lintasan terakhir dan golongan suatu atom? Kemudian, buatlah tabel seperti tersebut untuk periode 3, 4, 5, 6, dan 7. Kerjakanlah secara berkelompok dan presentasikan hasil yang diperoleh di depan kelas. Jumlah lintasan yang dimiliki suatu atom berhubungan dengan periode atom tersebut dalam tabel periodik. Adapun jumlah elektron pada lintasan terakhir suatu atom disebut dengan elektron terluar (elektron valensi). Elektron valensi berhubungan dengan nomor golongan suatu atom.

Contoh 1.5

Tentukan periode dan golongan atom-atom berikut.

a. C (nomor atom = 6)

b. Al (nomor atom = 13)

c. Ar (nomor atom = 18)

Jawab

a. Nomor atom C = 6, konfigurasinya 2 4, jumlah lintasan = 2 (K dan L) Golongan = elektron valensi = 4; Periode = jumlah lintasan = 2 Jadi, atom C terletak pada periode 2 golongan IVA. Untuk memudahkannya, jawaban ditulis seperti tabel berikut.

d. Cara Menentukan Isotop, Isobar, dan Isoton

Mungkin Anda pernah mendengar tentang isotop radioaktif di media massa. Tahukah Anda arti dari isotop tersebut? Suatu unsur bisa saja memiliki lebih dari satu atom. Perbedaan antara atom-atom yang menyusun unsur ini terletak pada nomor massanya. Atomatom dari unsur yang sama yang memiliki nomor atom sama, tetapi memiliki nomor massa yang berbeda disebut isotop. Misalnya, unsur hidrogen memiliki 3 buah isotop. Ketiga isotop tersebut memiliki nomor massa yang berbeda, yaitu 1, 2, dan 3. Isotop hidrogen yang bernomor massa 1 disebut hidrogen, isotop hidrogen yang bernomor massa 2 disebut deuterium, sedangkan isotop hidrogen yang bernomor massa 3 disebut tritium.

Nomor massa atom dari suatu unsur dapat saja sama dengan atom dari unsur yang lain. Pasangan atom seperti ini disebut isobar. Adapun istilah untuk atom-atom dari unsur yang berbeda, tetapi memiliki jumlah neutron yang sama adalah isoton. Berdasarkan penjelasan tersebut, isotop, isoton, dan isobar dapat ditentukan dengan cara menentukan terlebih dahulu nomor atom, nomor massa, dan jumlah neutron masing-masing atom.

Contoh 1.6

Manakah di antara atom-atom berikut yang termasuk isotop, isoton, dan isobar?

a. C (nomor atom = 6, nomor massa = 12)

b. C (nomor atom = 6, nomor massa = 13)

c. C (nomor atom = 6, nomor massa = 14)

d. O (nomor atom = 8, nomor massa = 16)

e. O (nomor atom = 8, nomor massa = 18)

f. N (nomor atom = 7, nomor massa = 14)

Jawab

Untuk mengetahui isotop, isoton, dan isobar, terlebih dahulu harus ditentukan jumlah masing-masing proton, elektron, dan neutron. Untuk memudahkannya, jawaban ditulis seperti tabel berikut.

Berdasarkan Contoh 1.6, isotop adalah kelompok atau pasangan atom yang memiliki nomor atom yang sama, tetapi nomor massanya berbeda. Isobar adalah kelompok atau pasangan atom yang memiliki nomor atom yang berbeda, tetapi nomor massanya sama. Isoton adalah kelompok atau pasangan atom yang memiliki jumlah neutron yang sama.

5b - Struktur atom 11

e. Cara Menentukan Massa Atom Relatif Unsur

Jika Anda mengamati tabel periodik, Anda dapat mengetahui informasi mengenai massa atom relatif suatu unsur. Tahukah Anda, bagaimana cara menentukan massa atom relatif unsur-unsur tersebut? Atom memiliki ukuran yang sangat kecil sehingga tidak mungkin untuk menimbang massanya secara langsung. Sampai saat ini, belum ada timbangan yang dapat mengukurnya.

Pada awalnya, massa atom relatif dibandingkan terhadap atom hidrogen. Akan tetapi, pada 1961 IUPAC (International Union for Pure and Applied Chemistry) telah menentukan standar baru dalam penentuan massa atom relatif, yaitu atom karbon-12. Satuan massa atom suatu unsur ditentukan

merupakan massa atom rata-rata dari isotop-isotop yang dimiliki unsur tersebut. Mengapa demikian? Anda telah mengetahui yang dimaksud dengan isotop. Informasi mengenai adanya isotop inilah yang dijadikan acuan oleh para ilmuwan untuk menentukan massa atom relatif. Oleh karena suatu unsur dapat tersusun atas beberapa atom yang memiliki nomor massa yang sama, maka massa unsur ditentukan dengan cara mengambil rata-rata dari massa atom setiap isotop.

f. Cara Menentukan Massa Atom

1.  Bila di umpamakan sebuah benda sedang bergerak lurus dan diberikan gaya luar ke arah samping maka benda itu tidak akan bergerak lurus, melainkan ia akan bergerak membelok ke arah samping karena adanya gaya luar tersebut.

2. Seandainya anda sedang menghadapi sebuah bola meriam yang sedang melewati anda dan anda mau membelokkannya pada saat tepat lewat di depan anda. Dan alat yang anda punya hanyalah sebuah selang penyemprot air yang dihubungkan dengan sebuah pompa jet. Sejujurnya, apa yang anda lakukan .itu tidak akan berpengaruh banyak. Karena bola meriam itu sangat berat dan ia tidak akan membelok dari jalur lurusnya.

3. Berapa besar penyimpangan yang akan terjadi karena gaya luar itu, tergantung pada massa benda tersebut (dalam hal ini bola). Apabila kecepatan bola dan besarnya gaya luar itu diketahui anda bisa menghitung massa bola tersebut jika sudah diketahui bagaimana pola pembelokan yang terjadi pada bola tersebut. Semakin kecil pembelokan yang terjadi, berarti semakin berat massa bola tersebut.(Perhitungan yang sebenarnya tidaklah terlalu sulit) Prinsip diatas tersebut dapat juga diterapkan pada benda atau partikel seukuran atom.
Prinsip dasar dalam alat spektrometer massa
Atom dapat dibelokkan dalam sebuah medan magnet (dengan anggapan atom tersebut diubah menjadi ion terlebih dahulu). Karena partikel-partikel bermuatan listrik dibelokkan dalam medan magnet dan partikel-partikel yang tidak bermuatan (netral) tidak dibelokkan.

Tahap –tahap yang terjadi dalam alat spektrometer massa :

1. Tahap pertama : Ionisasi

Atom di-ionisasi dengan emengambilf satu atau lebih elektron dari atom tersebut supaya terbentuk ion positif. Ini juga berlaku untuk unsur-unsur yang biasanya membentuk ion-ion negatif (sebagai contoh, klor) atau unsur-unsur yang tidak pernah membentuk ion (sebagai contoh, argon). spektrometer massa ini selalu bekerja hanya dengan ion positif.

2. Tahap kedua : Percepatan

Ion-ion tersebut dipercepat supaya semuanya mempunyai energi kinetik yang sama.

3. Tahap ketiga : Pembelokan

Ion-ion tersebut dibelokkan dengan menggunakan medan magnet, pembelokan yang terjadi tergantung pada massa ion tersebut. Semakin ringan massanya, akan semakin dibelokan. Besarnya pembelokannya juga tergantung pada besar muatan positif ion tersebut. Dengan kata lain, semakin banyak elektron yang ediambilf pada tahap 1, semakin besar muatan ion tersebut, pembelokan yang terjadi akan semakin besar.

4. Tahap keempat : Pendeteksian

Sinar-sinar ion yang melintas dalam mesin tersebut dideteksi dengan secara elektrik.

Diagram alat spektrometer massa:

Gambar 1. Spektrometer massa

Keterangan
1. Keadaan hampa udara
Photobucket
Gambar 2. Keadaan hampa udara
Penting bagi ion-ion yang telah dibuat dalam ruang ionisasi untuk dapat bergerak lurus dalam mesin tanpa bertabrakan dengan molekul2 udara.

2. Ionisasi
Sampel yang berbentuk gas (vaporised sample) masuk ke dalam ruang ionisasi. Kumparan metal yang dipanaskan dengan menggunakan listrik emelepaskanf elektron-elektron yang ada pada sampel dan elektron-elektron lepas itu menempel pada perangkap elektron (electron trap) yang mempunyai muatan positif.
Partikel-partikel dalam sample tersebut (atom atau molekul) dihantam oleh banyak sekali elektron-elektron, dan beberapa dari tumbukan tersebut mempunyai energi cukup untuk melepaskan satu atau lebih elektron dari sample tersebut sehingga sample tersebut menjadi ion positif.
Kebanyakan ion-ion positif yang terbentuk itu mempunyai muatan +1 karena akan jauh lebih sulit untuk memindahkan elektron lagi dari sample yang sudah menjadi ion positif.
Ion-ion positif yang terbentuk ini ediajak keluarf dan masuk ke bagian mesin yang merupakan sebuah lempengan metal yang bermuatan positif (Ion repellel).
Tambahan: Seperti yang anda akan lihat sebentar lagi, seluruh ruang ionisasi ini dilakukan dengan menggunakan tegangan listrik positif yang besar (10.000 V). Ketika kita berbicara tentang kedua lempengan bermuatan positif, berarti lempengan tersebut mempunyai muatan lebih dari 10.000 V.

3. Percepatan
Photobucket
* Massa ion tersebut.
Ion-ion yang bermassa ringan akan dibelokkan lebih daripada ion-ion yang bermassa berat.
* Muatan ion.
Ion yang mempunyai muatan +2 (atau lebih) akan dibelokkan lebih daripada ion-ion yang bermuatan +1.
Dua faktor diatas digabungkan ke dalam Perbandingan Massa/Muatan. Perbandingan ini mempunyai simbol m/z (atau m/e)
Sebagai contoh: Apabila sebuah ion mempunyai massa 28 dan bermuatan +1, maka perbandingan massa/muatan ion tersebut adalah 28. Ion yang mempunyai massa 56 dan bermuatan +2 juga mempunyai perbandingan massa/muatan yang sama yaitu 28.
Pada gambar diatas, sinar A mengalami pembelokkan yang paling besar, yang berarti sinar tersebut terdiri dari ion-ion yang mempunyai perbandingan massa/muatan yang terkecil. Sedangkan sinar C mengalami pembelokkan yang paling kecil, berarti ia terdiri dari ion-ion yang mempunyai perbandingan massa/muatan yang paling besar.
Akan jauh lebih mudah untuk membahas masalah ini jika kita menganggap bahwa muatan semua ion adalah +1. Hampir semua ion-ion yang lewat dalam spektrometer massa ini bermuatan +1, sehingga besarnya perbandingan massa/muatannya akan sama dengan massa ion tersebut.
Tambahan: Anda juga harus mengerti bahwa kemungkinan adanya ion bermuatan +2(atau lebih), tetapi kebanyakan soal-soal akan memberikan spektrum massa dimana ion-ion nya hanya bermuatan +1. Kecuali bila ada petunjuk dalam soal tersebut, anda bisa menganggap bahwa ion yang sedang dibicarakan dalam soal tersebut adalah bermuatan +1
Jadi dengam menganggap semua ion bermuatan +1, maka sinar A terdiri dari ion yang paling ringan, selanjutnya sinar B dan yang terdiri dari ion yang paling berat adalah sinar C. Ion-ion yang ringan akan lebih dibelokkan daripada ion yang berat.
Pendeteksian
Pada gambar diatas, hanya sinar B yang bisa terus melaju sampai ke pendetektor ion. Ion-ion lainnya bertubrukan dengan dinding dimana ion-ion akan menerima elektron dan dinetralisasi. Pada akhirnya, ion-ion yang telah menjadi netral tersebut akan dipisahkan dari spektrometer massa oleh pompa vakum.
Ketika sebuah ion menubruk kotak logam, maka ion tersebut akan dinetralisasi oleh elektron yang pindah dari logam ke ion (gambar kanan). Hal ini akan menimbulkan ruang antara elektron-elektron yang ada dalam logam tersebut, dan elektron-elektron yang berada dalam kabel akan mengisi ruang tersebut.
Aliran elektron di dalam kabel itu dideteksi sebagai arus listrik yang bisa diperkuat dan dicatat. Semakin banyak ion yang datang, semakin besat arus listrik yang timbul.
Mendeteksi ion-ion lainnya.
Bagaimana ion-ion lainnya dapat dideteksi – padahal sinar A dan sinar B sudah tidak ada lagi dalam mesin?
Ingat bahwa sinar A dibelokkan paling besar, berarti ia mempunyai nilai m/z yang paling kecil(ion yang paling ringan bila bermuatan +1) Untuk membuat sinar ini sampai ke detektor ion, anda perlu membelokkan sinar tersebut dengan menggunakan medan magnet yang lebih kecil(gaya luar yang lebih kecil).
Untuk membuat ion-ion yang mempunyai nilai m/z yang besar(ion yang berat bila bermuatan +1) sampai ke detektor ion, maka anda perlu membelokkannya dengan menggunakan medan magnet yang lebih besar.
Dengan merubah besarnya medan magnet yang digunakan, maka anda bisa membawa semua sinar yang ada secara bergantian ke detektor ion, dimana disana ion-ion tersebut akan menimbulkan arus listrik dimana besarnya berbanding lurus dengan jumlah ion yang datang. Massa dari semua ion yang dideteksi itu tergantung pada besarnya medan magnet yang digunakan untuk membawa sinar tersebut ke detektor ion. Mesin ini dapat disesuaikan untuk mencatat arus listrik (yang merupakan jumlah ion-ion) dengan m/z secara langsung. Massa tersebut diukur dengan menggunakan skala 12C.
Tambahan: Skala 12C adalah skala dimana isotop 12C mempunyai berat tepat 12 unit.
Bagaimana bentuk output dari spektrometer massa
Hasil dari pencatat diagram disederhanakan menjadi ediagram garisf. Ini menunjukkan arus listrik yang timbul oleh beragam ion yang mempunyai perbandingan m/z masing2.
Diagram garis Molybdenum (Mo) adalah sebagai berikut:
Photobucket
Garis tegak lurus itu menunjukkan besarnya arus listrik yang diterima oleh alat pencatat arus yang berarti banyaknya ion datang ke detektor. Seperti yang anda bisa lihat dari diagram diatas, ion yang paling banyak adalah ion yang mempunyai perbandingan m/z 98. Ion-ion lainnya mempunyai perbandingan m/z 92,94,95,96,97 dan 100.
Ini berarti molybdenum mempunyai 7 macam isotop. Dengan menganggap bahwa semua ion tersebut bermuatan +1 maka berarti massa dari ketujuh isotop tersebut adalah 92,94,95,96,97 ,98 dan 100.

 
 

Leave a Reply